
Polyspace® Bug Finder™

Getting Started Guide

R2013b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Polyspace® Bug Finder™ Getting Started Guide
© COPYRIGHT 2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2013 Online only New for Version 1.0 (Release 2013b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

About Polyspace Bug Finder

1
Polyspace Bug Finder Product Description 1-2
Key Features . 1-2

Related Products . 1-3
Polyspace Code Prover . 1-3
Polyspace Products for Ada . 1-3

Bug Finder Workflows . 1-4

Polyspace and the Software Development Cycle 1-5
Software Quality and Productivity 1-5
Best Practices for Verification Workflow 1-6

Tutorials

2
Find Defects from the Polyspace Environment 2-2
Introduction . 2-2
Set Up Project . 2-2
Configure Text Editor . 2-5
Configure Coding Rules and Run Analysis 2-6
Review Results . 2-6
Fix Defects and Rerun Analysis . 2-10

Find Defects from Simulink . 2-11
Introduction . 2-11
Create Simulink Model and Generate Code 2-11
Run Bug Finder Analysis . 2-13
Review Results . 2-13

iii

Find Defects from the Eclipse Plug-In 2-17
Introduction . 2-17
Run Analysis and Review Results . 2-17

Find Defects from Visual Studio . 2-20
Introduction . 2-20
Run Analysis in Visual Studio . 2-20
Review Results . 2-24

Install Polyspace Plug-In for Eclipse 2-25
Install Polyspace Plug-In for Eclipse IDE 2-25
Uninstall Polyspace Plug-In for Eclipse IDE 2-27

Install Polyspace Add-In for Visual Studio 2-28
Install Polyspace Add-In for Visual Studio 2-28
Uninstall Polyspace Add-In for Visual Studio 2-29

Polyspace UML Link RH

3
Find Defects from IBM Rational Rhapsody 3-2
Code Analysis Approach . 3-2
Adding Polyspace Profile to Model . 3-3
Accessing Polyspace Features . 3-5
Configuring Analysis Options . 3-7
Running an Analysis . 3-9
Monitoring an Analysis . 3-11
Viewing Polyspace Results . 3-11
Locating Faulty Code in Rhapsody Model 3-12
Template Configuration Files . 3-14

Index

iv Contents

1

About Polyspace Bug Finder

• “Polyspace® Bug Finder™ Product Description” on page 1-2

• “Related Products” on page 1-3

• “Bug Finder Workflows” on page 1-4

• “Polyspace and the Software Development Cycle” on page 1-5

1 About Polyspace® Bug Finder™

Polyspace Bug Finder Product Description
Identify software defects via static analysis

Polyspace® Bug Finder™ identifies run-time errors, data flow problems,
and other defects in C and C++ embedded software. Using static
analysis, Polyspace Bug Finder analyzes software control, data flow, and
interprocedural behavior. It lets you triage and fix bugs early in the
development process.

Polyspace Bug Finder checks compliance with coding rule standards such
as MISRA C®, MISRA C++, JSF++, and custom naming conventions. It
generates reports consisting of bugs found, code-rule violations, and code
quality metrics such as cyclomatic complexity. Polyspace Bug Finder can be
used with the Eclipse™ IDE and integrated into build systems.

For automatically generated code, Polyspace results can be traced back
to Simulink® models, dSPACE® TargetLink® blocks, and IBM® Rational®

Rhapsody® diagrams.

Support for industry standards is available through IEC Certification Kit (for
IEC 61508 and ISO 26262) and DO Qualification Kit (for DO-178).

Key Features

• Detection of run-time errors, data flow problems, and other defects in C
and C++ code

• Fast analysis of large code bases

• Compliance checking for MISRA C:2004, MISRA C++:2008, JSF++, and
custom naming conventions

• Cyclomatic complexity and other code metrics

• Eclipse integration

• Traceability of code verification results to Simulink models

• Access to Polyspace Code Prover™ results

• Bug detection with low false-positive results

1-2

Related Products

Related Products

In this section...

“Polyspace® Code Prover™” on page 1-3

“Polyspace Products for Ada” on page 1-3

Polyspace Code Prover
For information about Polyspace products that verify C/C++ code, see the
following:

www.mathworks.com/products/polyspace-code-prover/

Polyspace Products for Ada
For information about Polyspace products that verify Ada code, see the
following:

www.mathworks.com/products/polyspaceclientada/

www.mathworks.com/products/polyspaceserverada/

1-3

http://www.mathworks.com/products/polyspace-code-prover/
http://www.mathworks.com/products/polyspaceclientada/
http://www.mathworks.com/products/polyspaceserverada/

1 About Polyspace® Bug Finder™

Bug Finder Workflows
Below are four different workflows for using the Polyspace Bug Finder
product. Use Bug Finder regularly to help catch bugs and coding rule
violations as you build your project.

1-4

Polyspace® and the Software Development Cycle

Polyspace and the Software Development Cycle

In this section...

“Software Quality and Productivity” on page 1-5

“Best Practices for Verification Workflow” on page 1-6

Software Quality and Productivity
The goal of most software development teams is to maximize both quality and
productivity. However, when developing software, there are always three
related variables: cost, quality, and time.

Changing the requirements for one of these variables always impacts the
other two.

Generally, the criticality of your application determines the balance between
these three variables – your quality model. With classical testing processes,
development teams generally try to achieve their quality model by testing
all modules in an application until each meets the required quality level.
Unfortunately, this process often ends before quality requirements are met,
because the available time or budget has been exhausted.

Polyspace analysis and verification allow a different process. Polyspace can
support both productivity improvement and quality improvement at the same
time, although there is always a balance between the aims of these activities.

To achieve maximum quality and productivity, however, you cannot simply
perform code analysis or verification at the end of the development process.
You must integrate both into your development process, in a way that
respects time and cost restrictions.

1-5

1 About Polyspace® Bug Finder™

Best Practices for Verification Workflow
Polyspace can be used throughout the software development cycle. However,
to maximize both quality and productivity, the most efficient time to use
it is early in the development cycle.

Polyspace® Verification in the Development Cycle

Typically, verification is conducted in two stages. First, you verify code as it is
written, to check coding rules and quickly identify any obvious defects. Once
the code is stable, you verify it again before module/unit testing, with more
stringent verification and review criteria.

Using verification early in the development cycle improves both quality and
productivity, because it allows you to find and manage defects soon after the
code is written. This saves time because each user is familiar with their own
code, and can quickly determine why the code contains defects. In addition,
defects are cheaper to fix at this stage, since they can be addressed before the
code is integrated into a larger system.

1-6

2

Tutorials

• “Find Defects from the Polyspace Environment” on page 2-2

• “Find Defects from Simulink” on page 2-11

• “Find Defects from the Eclipse Plug-In” on page 2-17

• “Find Defects from Visual Studio” on page 2-20

• “Install Polyspace Plug-In for Eclipse” on page 2-25

• “Install Polyspace Add-In for Visual Studio” on page 2-28

2 Tutorials

Find Defects from the Polyspace Environment

In this section...

“Introduction” on page 2-2

“Set Up Project” on page 2-2

“Configure Text Editor” on page 2-5

“Configure Coding Rules and Run Analysis” on page 2-6

“Review Results” on page 2-6

“Fix Defects and Rerun Analysis” on page 2-10

Introduction
In this tutorial, you analyze a simple code example using Polyspace Bug
Finder. To do this analysis, the tutorial follows a common workflow for using
Polyspace Bug Finder:

1 Set up project and configuration options.

2 Run analysis.

3 Review results.

4 Fix defects and rerun analysis.

Set Up Project
Set up the source files and create a new Polyspace project to analyze these
files.

Note In this example, MATLAB_ROOT refers to the installation location of
MATLAB®. For example:

C:\Program Files\MATLAB\R2013b.

1 In a writable folder, create a new folder called bf_project.

2-2

Find Defects from the Polyspace® Environment

2 Copy the folder,
MATLAB_ROOT\polyspace\examples\cxx\Bug_Finder_Example\sources,
to the bf_project folder that you created in step 1.

3 Open Bug Finder. To open Bug Finder, you can use the Start menu,
desktop shortcut, or command line:

• Start Menu: All Programs > MATLAB > R2013b > Polyspace Bug
Finder R2013b

• Desktop shortcut: if you created shortcuts during installation, select the
Polyspace Bug Finder icon from the desktop

• DOS command-line: enter:

MATLAB_ROOT\polyspace\bin\polyspace-bug-finder

• UNIX command-line: enter:

MATLAB_ROOT/polyspace/bin/polyspace-bug-finder

4 In Polyspace Bug Finder, select File > New Project. The Project Wizard
opens to help you create a new Polyspace project.

5 In the Project Name field, enter bf_project as your project name.

6 Clear the Use default location check box. Enter the location of the
bf_project folder that you created in step 1.

7 Select the Use Template check box to speed up the configuration process
by using a preconfigured template.

2-3

2 Tutorials

8 Click Next.

9 Select Baseline_C, a generic template for C coding projects. Click Next.

10 Select the sources folder and click Add Source Files to add all source
files to your project.

2-4

Find Defects from the Polyspace® Environment

11 Click Finish.

Configure Text Editor
Before you start an analysis, configure your text editors through the
Polyspace Preferences dialog box. You can then view source files directly
from the Polyspace user interface.

1 Select Options > Preferences.

2 In the Preferences dialog box, select the Editors tab.

2-5

2 Tutorials

3 Specify a Text Editor to use to view source files from the Project Manager
logs. For example:

C:\Program Files\Windows NT\Accessories\wordpad.exe

4 From the Arguments drop-down list, select your text editor to specify the
command line arguments for that editor.

If you are using a text editor that is not in the drop-down list, select
Custom. In the text field to the right of Custom, specify the command line
arguments for the text editor.

5 Click OK.

Configure Coding Rules and Run Analysis
During the project setup, you selected a configuration template. The template
already set most analysis options. Now, before running analysis, you specify
one additional option for checking coding rules.

1 In the Coding Rules pane of the Configuration window, select Check
MISRA C rules to add coding rules checking to your analysis.

2 From the Polyspace toolbar, select Run. You can follow the analysis in the
Progress Monitor window.

Review Results

1 After the analysis is complete, from the Project Browser, double-click
Results > bf_project.psbf.

Polyspace switches to the Result Manager perspective and displays the
analysis results.

In the Bug Finder Results Manager, you see three windows:

2-6

Find Defects from the Polyspace® Environment

2-7

2 Tutorials

Window
Name

Purpose

Results
Summary

See all defects found.

You can view the results in an ungrouped list, by file/function, or by defect type.
In any of these views, you can sort or filter the results using the column headers.
Right-click the column header to add or remove columns. You enter all defect-specific
comments and justifications in this perspective using the Status and Comments
columns.

Check
Details

See more details about a selected defect.

The window includes a description of the defect, the offending line of code, and, if
applicable, a code sequence to help find the root cause of the defect.

Source See the defect in the source code.

By default, a separate tab appears showing global results statistics. These statistics
can provide a big picture of the defect distribution and top coding rule violations.

As you select different checks, the source files open. All results are marked in
the source code. Red underlined code with a red exclamation point in the margin
indicates a defect. A purple triangle above the code indicates a coding rule violation.
Macro expansions are labeled with a blue M, which toggles between the macro and
the executed code.

The line of code with the selected defect is highlighted in dark blue. If a code
sequence is available, those sequential lines of code are highlighted in light blue
and a box outlines their line numbers.

collapsed macro

expanded macro

defect

code sequence

coding rule violation

2-8

Find Defects from the Polyspace® Environment

1 In the Results Summary window, make sure that you select the List of
Checks setting.

2 Right-click on the column headers and add the ID column to the Results
Summary window.

3 Hover your cursor over the Check column header and select the filter

button . Clear All and select 5.2 Identifiers in an inner scope
shall not... to view only MISRA C rule 5.2 results.

4 Select the coding rule violation in the dataflow.c file. This violation of
MISRA C rule 5.2 must be fixed eventually, but can be saved for later. The
Results Summary window has a classification, a status, and a comments
columns insert annotations that you can refer to later.

5 For the selected result, change the Status to Fix.

6 In the Comments field enter, Change identifier.

7 Select File > Save to save your annotations.

8 Clear the filter from the Check column.

9 Hover your cursor over the Family column header (the column of icons)

and select the filter button . Clear MISRA-C Warning to filter out all the
coding rule violations. Click OK.

The only results left are the defects.

10 Select the File column to sort by file

11 Locate the Invalid use of == operator in the programming.c file.

2-9

2 Tutorials

As the Check Details state, the error is an incorrect use of ==. In this
example, the == in the for-loop is supposed to be an =.

12 In the next line of code, select the red bracket to highlight the Array
access out of bounds result.

This defect is an out-of-bounds array access. As the check details state, the
array index, i, exceeds the array bounds. i reaches a value of 8 because of
the incorrect equals operator from the previous line. The previous error
causes the for-loop to loop nine times instead of four.

Fix Defects and Rerun Analysis

1 Select the Invalid use of == operator defect.

2 In the Source Code window, right-click the red code and select Open
Source Code.

In a text editor, the source code file, programming.c, opens to the incorrect
line.

3 At line 45 where the invalid operator was found, change the == to =:

for (j = 5; j < 9; j++) {

4 Save programming.c.

5 In the Polyspace environment, return to the Project Manager.

6 Rerun the analysis.

7 Open the new results.

Polyspace automatically imports your previous comments into the new
results. In the Results Summary window, find the coding rule that you
annotated earlier. You can see the Fix status and comment that you
entered now imported to the new results.

2-10

Find Defects from Simulink®

Find Defects from Simulink

In this section...

“Introduction” on page 2-11

“Create Simulink Model and Generate Code” on page 2-11

“Run Bug Finder Analysis” on page 2-13

“Review Results” on page 2-13

Introduction
In this tutorial, you analyze the generated code from a Simulink model using
Polyspace Bug Finder. To do this analysis, the tutorial follows a common
workflow for model-generated code analysis:

1 Generate code.

2 Set up Polyspace configuration options.

3 Run analysis.

4 Review results.

Create Simulink Model and Generate Code

1 Open MATLAB and open Simulink.

2 Create the model below.

2-11

2 Tutorials

3 Select Code > C/C++ Code > Code Generation Options to open the
Model Configuration window.

4 Set the following options:

Pane Option Value

System target file ert.tlcCode
Generation Generate code

only
Selected

Type Fixed-step

Solver discrete (no continuous
states)

Solver

Fixed-step size 0.1

Remove root
level I/O zero
initialization

SelectedOptimization

’Use memset to
initialize floats
and doubles to 0.0

Not selected

Optimization > Signals
and Parameters

Inline parameters Selected

5 Save your model as bf_model.

2-12

Find Defects from Simulink®

6 From the Simulink menu, select Code > C/C++ Code > Build Model
to generate code.

Run Bug Finder Analysis

1 After themodel has finished building, selectCode > Polyspace > Options.

2 In the Configuration Parameters window that opens, on the Polyspace
pane, set the following options.

Option Value

Product mode Bug Finder

Settings from
Project configuration
and MISRA rule checking

Open results automatically after
verification

On

These options set the type of Polyspace analysis and configure the analysis
to check for bugs and MISRA C coding rule violations.

3 From the same pane, apply your changes and click Run verification to
start the Bug Finder.

You can follow the progress of the analysis in the Command Window.

Review Results

1 After the analysis has finished, the results open in the Results Manager
window of the Polyspace environment.

In the Bug Finder Results Manager, you see three windows:

2-13

2 Tutorials

Window
Name

Purpose

Results
Summary

See all defects found.

You can view the results in an ungrouped list, by file/function, or by defect type.
In any of these views, you can sort or filter the results using the column headers.
Right-click the column header to add or remove columns. You enter all defect-specific

2-14

Find Defects from Simulink®

Window
Name

Purpose

comments and justifications in this perspective using the Status and Comments
columns.

Check
Details

See more details about a selected defect.

The window includes a description of the defect, the offending line of code, and, if
applicable, a code sequence to help find the root cause of the defect.

Source See the defect in the source code.

By default, a separate tab appears showing global results statistics. These statistics
can provide a big picture of the defect distribution and top coding rule violations.

As you select different checks, the source files open. All results are marked in
the source code. Red underlined code with a red exclamation point in the margin
indicates a defect. A purple triangle above the code indicates a coding rule violation.
Macro expansions are labeled with a blue M, which toggles between the macro and
the executed code.

The line of code with the selected defect is highlighted in dark blue. If a code
sequence is available, those sequential lines of code are highlighted in light blue
and a box outlines their line numbers.

collapsed macro

expanded macro

defect

code sequence

coding rule violation

For this simple model, Bug Finder found one defect and eight coding rule
violations.

2 Select the Invalid use of floating point operation defect.

2-15

2 Tutorials

The Source Code pane highlights the faulty generated code. If you look in
the Check Details pane, the equality operator between the two inputs is
imprecise because both input types are floating point.

3 In the source code above the defect, click Root\In1.

In the Simulink model, the associated In1 block is highlighted in blue. This
link between the model and the generated code helps you identify the parts
of your model that are causing defect.

4 Double-click the highlighted In1 block.

5 In the Signal Attributes tab, change the Data type to Int8. Select Okay.

6 Regenerate the code by selecting Code > C/C++ Code > Build Model.

7 Rerun the analysis by selecting Code > Polyspace > Verify Generated
Code for > Model.

The results open automatically in Polyspace. In the new results, the
previous defect and an associated MISRA® coding violation no longer
appear.

2-16

Find Defects from the Eclipse™ Plug-In

Find Defects from the Eclipse Plug-In

In this section...

“Introduction” on page 2-17

“Run Analysis and Review Results” on page 2-17

Introduction
Before starting a code analysis, you must install the Polyspace Bug Finder
plug-in for Eclipse. For instructions see, “Install Polyspace Plug-In for Eclipse
IDE” on page 2-25.

In this tutorial, you analyze a simple code example using Polyspace Bug
Finder in Eclipse. A common workflow for code analysis with Polyspace Bug
Finder is:

1 Set up project and configuration options.

2 Run analysis.

3 Review results and fix defects.

4 Rerun analysis.

This tutorial follows a shortened version of this workflow.

Run Analysis and Review Results

1 After you install the plug-in, a Polyspace menu appears on the toolbar.
Select Polyspace > Show View > Show Polyspace Log view to view
the Polyspace Log window.

2-17

2 Tutorials

2 In the Polyspace Log window, select the product you want to use.

Polyspace will use Bug Finder configuration options and analysis to
analyze your Eclipse project.

3 In the Eclipse Project Explorer pane, right-click a project with C or C++
files and from the context menu select Start Polyspace Bug Finder.

Note You can also right-click a single source file to only analyze that file.

As the analysis runs, you can follow the progress in the Progress Monitor
tab of the Polyspace Log window. If there are any compilation errors that
prevent analysis, they appear in the Output Summary tab.

2-18

Find Defects from the Eclipse™ Plug-In

4 After the analysis finishes, the Results Summary window appears. As
you select different defects, the source code switches to that line number.
Details about the error appear in the Check Details window.

5 After fixing bugs or adding code, you can rerun the analysis from the

Results Summary window by clicking the rerun button, .

2-19

2 Tutorials

Find Defects from Visual Studio

In this section...

“Introduction” on page 2-20

“Run Analysis in Visual Studio” on page 2-20

“Review Results” on page 2-24

Introduction
Before starting a code analysis, you must install the Polyspace Bug Finder
plug-in for Visual Studio®. For instructions see, “Install Polyspace Add-In for
Visual Studio” on page 2-28.

In this tutorial, you analyze a simple code example using Polyspace Bug
Finder in Visual Studio. A common workflow for code analysis with Polyspace
Bug Finder is:

1 Set up project and configuration options.

2 Run analysis.

3 Review results and fix defects.

4 Rerun analysis.

This tutorial follows a shortened version of this workflow.

Run Analysis in Visual Studio

1 After you install the plug-in, a Polyspace menu appears on the toolbar.
Select Polyspace > Display Polyspace Log to view the Polyspace Log
window.

2-20

Find Defects from Visual Studio®

2 In the Visual Studio Solution Explorer view, select one or more files
that you want to analyze.

3 Right-click the selection, and select Polyspace Verification.

The Easy Settings dialog box opens.

2-21

2 Tutorials

4 In the Easy Settings dialog box, you can specify the following options for
your analyses:

• Under Settings, configure the following:

– Precision — Precision of analysis (-0)

– Passes — Level of analysis (-to)

– Results folder – Location where software stores analysis results
(-results-dir)

• Under Verification Mode Settings, configure the following:

2-22

Find Defects from Visual Studio®

– Generate main or Use existing— Whether Polyspace generates a
main subprogram (-main-generator) or uses an existing subprogram
(-main)

– Class — Name of class to analyze (-class-analyzer)

– Class analyzer calls — Functions called by generated main
subprogram (-class-analyzer-calls)

– Class only— Analysis of class contents only (-class-only)

– Main generator write — Type of initialization for global variables
(-main-generator-writes-variables)

– Main generator calls — Functions (not in a class) called by
generated main subprogram (-main-generator-calls)

– Function called before main— Function called before all functions
(-function-call-before-main)

• Under Scope, you can modify the list of files and classes to analyze.

For information on how to choose your options, see “Analysis Options for
C++”.

Note In the Configuration window of the Polyspace interface, you
configure options that you cannot set in the Easy Settings dialog box. See
“Customize Polyspace Options”.

5 If necessary, clear the Use Code Prover analysis check box.

6 Click Start to start the analysis.

Once you start the software, you can follow its progress in the Polyspace
Log view.

Compilation errors are highlighted as links. Click a link to display the file
and line that produced the error.

2-23

2 Tutorials

If the analysis is being carried out on a server, use the Polyspace
Spooler or Polyspace Metrics to follow the analysis progress. Select
Polyspace > Spooler, which opens the Polyspace Queue Manager
Interface dialog box.

Review Results

Select to open the Results Manager perspective of the Polyspace interface
with the last available results. If the analysis has been carried out on a
server, download the results before opening the Results Manager perspective.

For information on reviewing and understanding Polyspace Bug Finder
results, see “View Results”.

2-24

Install Polyspace Plug-In for Eclipse

Install Polyspace Plug-In for Eclipse

In this section...

“Install Polyspace Plug-In for Eclipse IDE” on page 2-25

“Uninstall Polyspace Plug-In for Eclipse IDE” on page 2-27

Install Polyspace Plug-In for Eclipse IDE
You can install the Polyspace plug-in only after you:

• Install and set up Eclipse Integrated Development Environment (IDE). For
more information, see the Eclipse documentation at www.eclipse.org.

• Install Java® 7. See Java documentation at www.java.com.

• Uninstall any previous Polyspace plug-ins. For more information, see
“Uninstall Polyspace Plug-In for Eclipse IDE” on page 2-27.

To install the Polyspace plug-in:

1 From the Eclipse editor, select Help > Install New Software. The Install
wizard opens, displaying the Available Software page.

2 Click Add to open the Add Repository dialog box.

3 In the Name field, specify a name for your Polyspace site, for example,
Polyspace_Eclipse_PlugIn.

4 Click Local, to open the Browse for Folder dialog box.

5 Navigate to the MATLAB_Install\matlab\polyspace\plugin\eclipse
folder. Then click OK.

MATLAB_Install is the installation folder for the Polyspace product, for
example:

C:\Program Files\MATLAB\R2013b

6 Click OK to close the Add Repository dialog box.

7 On the Available Software page, select Polyspace Plugin for Eclipse.

2-25

http://www.eclipse.org/
http://www.java.com

2 Tutorials

8 Click Next.

9 On the Install Details page, click Next.

10 On the Review Licenses page, review and accept the licence agreement.
Then click Finish.

Once you install the plug-in, in the Eclipse editor, you’ll see:

• A Polyspace menu

• A Polyspace Log view

2-26

Install Polyspace Plug-In for Eclipse

Uninstall Polyspace Plug-In for Eclipse IDE
Before installing a new Polyspace plug-in, you must uninstall any previous
Polyspace plug-ins.

1 In Eclipse, select Help > About Eclipse.

2 Select Installation Details.

3 Select the Polyspace plug-in and select Uninstall.

Follow the uninstall wizard to remove the Polyspace plug-in. You must
restart Eclipse for any changes to take effect.

2-27

2 Tutorials

Install Polyspace Add-In for Visual Studio

Install Polyspace Add-In for Visual Studio
You can install the Polyspace add-in only after you:

• Install Visual Studio.

• Uninstall any previous Polyspace add-ins. For more information see
“Uninstall Polyspace Add-In for Visual Studio” on page 2-29.

To install the Polyspace add-in:

1 In the Visual Studio editor, select Tools > Options to open the Options
dialog box.

2 Select the Environment > Add-in/Macros Security pane to display the
list of Visual Studio add-in folders.

3 Select the following check boxes:

• Allow macros to run

• Allow Add-in components to load

4 Click Add to open the Browse For Folder dialog box.

5 Navigate to
MATLAB_Install\matlab\polyspace\plugin\msvc\VS_version

• MATLAB_Install is the installation folder for the Polyspace product,
for example:

C:\Program Files\MATLAB\R2013b

• VS_version corresponds to the version of Visual Studio that you have
installed, for example, 2010.

6 Click OK to close the Browse for Folder dialog box.

7 To close the Options dialog box, click OK.

2-28

Install Polyspace® Add-In for Visual Studio®

You must restart Visual Studio for the changes to take effect. After you install
the add-in, the Visual Studio editor has:

• A Polyspace menu

• A Polyspace Log view

Uninstall Polyspace Add-In for Visual Studio
Before installing a new Polyspace add-in, you must uninstall any previous
Polyspace add-ins.

1 In the Visual Studio editor, select Tools > Options to open the Options
dialog box.

2 Select the Environment > Add-in/Macros Security pane to display the
list of Visual Studio add-in folders.

3 Select the Polyspace add-in and select Remove.

4 To close the Options dialog box, click OK.

You must restart Visual Studio for the changes to take effect.

2-29

2 Tutorials

2-30

3

Polyspace UML Link RH

3 Polyspace® UML Link™ RH

Find Defects from IBM Rational Rhapsody

In this section...

“Code Analysis Approach” on page 3-2

“Adding Polyspace Profile to Model” on page 3-3

“Accessing Polyspace Features” on page 3-5

“Configuring Analysis Options” on page 3-7

“Running an Analysis” on page 3-9

“Monitoring an Analysis” on page 3-11

“Viewing Polyspace Results” on page 3-11

“Locating Faulty Code in Rhapsody Model” on page 3-12

“Template Configuration Files” on page 3-14

Code Analysis Approach
In a collaborative Model-Driven Development (MDD) environment, software
run-time errors can be produced by either design issues in the model or faulty
handwritten code. You may be able to detect the flaws using code reviews
and intensive testing. However, these techniques are time-consuming and
expensive.

With Polyspace Bug Finder, you can analyze C/C++code that you generate
from your IBM Rational Rhapsody model. As a result, you can find defects
and automatically identify model flaws quickly and early during the design
process.

For information about installing and using IBM Rational Rhapsody, go to
www-01.ibm.com/software/awdtools/rhapsody/.

The approach for using Polyspace Bug Finder within the IBM Rational
Rhapsody MDD environment is:

• Integrate the Polyspace add-in with your Rhapsody project. See “Adding
Polyspace Profile to Model” on page 3-3.

3-2

http://www-01.ibm.com/software/awdtools/rhapsody/

Find Defects from IBM® Rational® Rhapsody®

• If required, specify Polyspace configuration options in the Polyspace
environment. See “Configuring Analysis Options” on page 3-7.

• Specify the include path to your operating system (environment) header
files and run an analysis. See “Running an Analysis” on page 3-9 and
“Monitoring an Analysis” on page 3-11.

• View results, analyze errors, and locate faulty code within model. See
“Viewing Polyspace Results” on page 3-11and “Locating Faulty Code in
Rhapsody Model” on page 3-12.

Adding Polyspace Profile to Model
Before you try to access Polyspace features, you must add the Polyspace
profile to your model :

1 In the Rhapsody editor, select File > Add Profile to Model. The Add
Profile to Model dialog box opens.

2 Navigate to the folder
Polyspace_Install\polyspace\plugin\rhapsody\profiles\Polyspace.

3 Select the file Polyspace.sbs. Then click Open.

Now, if you right-click a package or file, you see Polyspace features in the
context menu.

3-3

3 Polyspace® UML Link™ RH

Polyspace Verification is also available from the Tools menu.

3-4

Find Defects from IBM® Rational® Rhapsody®

Note The 64-bit version of the Polyspace product does not support the Back
to model command with the 32-bit IBM Rational Rhapsody product.

To install the 32-bit Polyspace version, from a DOS command window, run
the following command:

DVD\Installer32bits\Windows\Disk1\InstData\VM\Polyspace.exe

Accessing Polyspace Features
To access Polyspace features in the Rhapsody editor:

1 Open the model that you want to analyze. For
example, psdemos_uml_link_airbag.rpy in
matlabroot/polyspace/plugin/rhapsody/psdemos. Where matlabroot
is the location of the Polyspace installation folder.

2 In the Entire Model View, expand the Packages node.

3 Right-click a package, for example, AirBagFiles.

3-5

3 Polyspace® UML Link™ RH

You see the following Polyspace functions in the context menu:

3-6

Find Defects from IBM® Rational® Rhapsody®

• Polyspace Verification — Start analysis. See “Running an Analysis”
on page 3-9.

• Polyspace Help — Open help.

• Stop Polyspace Verification — Stop client-based analysis. See
“Running an Analysis” on page 3-9.

• Polyspace Spooler — Open Polyspace Queue Manager. See
“Monitoring an Analysis” on page 3-11.

• Edit Configuration — Specify analysis options. See “Configuring
Analysis Options” on page 3-7.

• View Results — View Bug Finder results. See “Viewing Polyspace
Results” on page 3-11.

Note You must add the Polyspace profile to your model before you try
to access Polyspace functions. See “Adding Polyspace Profile to Model”
on page 3-3.

Configuring Analysis Options
To specify options for your analysis:

1 In the Entire Model View, right-click a package or class, for example,
AirbagControl.

3-7

3 Polyspace® UML Link™ RH

2 From the context menu, select Edit Configuration. The Configuration
pane of the Polyspace environment opens.

3 Select options for your analysis. In particular, you must specify the
following:

3-8

Find Defects from IBM® Rational® Rhapsody®

• Target operating system (-OS-target)

• Dialect (-dialect)

• Include Folders (-I) — Path to your operating system (environment)
header files.

4 To save your options, in the top left corner, click the disk button.

For information on how to choose your options, see “Analysis Options for C” or
“Analysis Options for C++”.

Running an Analysis
To start an analysis:

1 In the Rhapsody editor, select Tools > Polyspace Verification. The
software opens the Polyspace Verification dialog box.

Note Before starting an analysis, make sure that the generated code for
the model is up to date.

3-9

3 Polyspace® UML Link™ RH

2 In the Results folder field, specify a location for your analysis results.

3 Select the Verification mode:

• Class— Select a specific class from the Class to verify drop-down list.
In addition, under Verify with (highlight classes), you can select
other classes from the displayed list, for example, CrashSensor_C.

• Expert — The software analyzes code according to the Generate a
main (-main-generator) options that you specify.

4 If you want to run the analysis on your Polyspace server, select Send to
Polyspace server.

5 Click Run. You see analysis messages on the Log tab of the Rhapsody
editor.

If your analysis is client-based, you can stop your analysis. In the Entire
Model View, right-click, for example, a package or a class. From the context
menu, select Stop Polyspace Verification.

To stop an analysis on the Polyspace Server, use the Polyspace Queue
Manager. See “Monitoring an Analysis” on page 3-11.

3-10

Find Defects from IBM® Rational® Rhapsody®

Monitoring an Analysis
If your analysis is client-based, you can observe progress on the Log tab of
the Rhapsody editor.

If your analysis is running on a Polyspace Server, in the Entire Model View,
right-click, for example, a package or a class. From the context menu, select
Polyspace Spooler to display the Polyspace Queue Manager (or Spooler).
Use the Polyspace Queue Manager to manage jobs running on any Polyspace
Server.

For more information, see “Verification Management”.

Viewing Polyspace Results
To view results from the last completed analysis, in the Entire Model View,
right-click, for example, a package or a class. From the context menu, select
View Results. The Polyspace environment opens, displaying results in the
Results Manager perspective.

For more information on Bug Finder results, see “View Results”.

Declarations for C Functions Without Arguments
By default, Rhapsody generates declarations for functions without any
parameters, using the form:

3-11

3 Polyspace® UML Link™ RH

void my_function()

rather than:

void my_function(void)

This can result in the following Polyspace compilation error:

Fatal error: function 'my_function' has unknown prototype.

To avoid this problem, in Rhapsody, at the project level, set the property
C_CG::Configuration::EmptyArgumentListName to void.

Locating Faulty Code in Rhapsody Model
To identify the faulty code within your Rhapsody model using Bug Finder
analysis results:

1 In the Results Manager perspective of the Polyspace environment, navigate
to an error, for example, a non-initialized variable at line 102 of Airbag
Control_C.

2 In the Source pane, right-click the error. From the context menu, select
Back to model.

3-12

Find Defects from IBM® Rational® Rhapsody®

Tip For the Back to model command to work, you must have your
Rhapsody model open.

The Back to model command works best when the Polyspace check is
enclosed by the tags //#[and]#//.

The software locates the faulty code within your Rhapsody model.
Depending on the Rhapsody configuration, the faulty code appears either
in a dialog box or in the code view.

3-13

3 Polyspace® UML Link™ RH

Note The 64-bit version of the Polyspace product does not support the
Back to model command with the 32-bit IBM Rational Rhapsody product.

To install the 32-bit Polyspace version, from a DOS command window,
run the following command:

DVD\Installer32bits\Windows\Disk1\InstData\VM\Polyspace.exe

Template Configuration Files
The first time you perform an analysis, the software
copies a template, Polyspace configuration file, from
matlabroot/polyspace/plugin/rhapsody/etc/template_language.psprj
to the project folder. The template_language.psprj files specify the
default option values for code analysis. The software renames the copy
to model_language.psprj, where:

• model is the name of your model

3-14

Find Defects from IBM® Rational® Rhapsody®

• language is the name of the language that the model targets, that is C
or C++.

You can update the template .psprj file by one of the following means:

• Editing it through the Polyspace environment

• Double-clicking the file in a Windows® Explorer window

• Replacing the template file with a copy of the .psprj file from a Rhapsody
model folder

You can then share a configuration among project members and use the
configuration with other projects.

3-15

3 Polyspace® UML Link™ RH

3-16

Index

IndexC
Code Prover 1-3

E
Eclipse

installing plug-in 2-25

P
Polyspace C++ add-in for Visual Studio 2-28
Polyspace plug-in for Eclipse IDE 2-25

R
related products 1-3

Polyspace products for C code 1-3
Polyspace products for C++ code 1-3

V
Visual Studio

installing add-in 2-28

Index-1

	toc
	About Polyspace Bug Finder
	Polyspace Bug Finder Product Description
	Key Features

	Related Products
	Polyspace Code Prover
	Polyspace Products for Ada

	Bug Finder Workflows
	Polyspace and the Software Development Cycle
	Software Quality and Productivity
	Best Practices for Verification Workflow

	Tutorials
	Find Defects from the Polyspace Environment
	Introduction
	Set Up Project
	Configure Text Editor
	Configure Coding Rules and Run Analysis
	Review Results
	Fix Defects and Rerun Analysis

	Find Defects from Simulink
	Introduction
	Create Simulink Model and Generate Code
	Run Bug Finder Analysis
	Review Results

	Find Defects from the Eclipse Plug-In
	Introduction
	Run Analysis and Review Results

	Find Defects from Visual Studio
	Introduction
	Run Analysis in Visual Studio
	Review Results

	Install Polyspace Plug-In for Eclipse
	Install Polyspace Plug-In for Eclipse IDE
	Uninstall Polyspace Plug-In for Eclipse IDE

	Install Polyspace Add-In for Visual Studio
	Install Polyspace Add-In for Visual Studio
	Uninstall Polyspace Add-In for Visual Studio

	Polyspace UML Link RH
	Find Defects from IBM Rational Rhapsody
	Code Analysis Approach
	Adding Polyspace Profile to Model
	Accessing Polyspace Features
	Configuring Analysis Options
	Running an Analysis
	Monitoring an Analysis
	Viewing Polyspace Results
	Declarations for C Functions Without Arguments

	Locating Faulty Code in Rhapsody Model
	Template Configuration Files

	Index

